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Abstract
Multi-band systems such as inter-metallic and heavy fermion compounds have quasi-particles
arising from different orbitals at their Fermi surface. Since these quasi-particles have different
masses or densities, there is a natural mismatch of the Fermi wavevectors associated with
different orbitals. This makes these materials potential candidates to observe exotic
superconducting phases as Sarma or FFLO phases, even in the absence of an external magnetic
field. The distinct orbitals coexisting at the Fermi surface are generally hybridized and their
degree of mixing can be controlled by external pressure. In this work we investigate the
existence of an FFLO type of phase in a two-band BCS superconductor controlled by
hybridization. At zero temperature, as hybridization (pressure) increases we find that the BCS
state becomes unstable with respect to an inhomogeneous superconducting state characterized
by a single wavevector q .

1. Introduction

Asymmetric superfluidity refers to Cooper pairing in systems
with mismatched Fermi surfaces. This phenomenon includes
the FFLO state [1, 2] where an external magnetic field produces
a mismatch between bands with different spin orientations. It
also occurs in cold atom systems where the mismatch is due to
different numbers of interacting fermions [3, 4]. Also it may
appear in the interior of neutron stars where the pairing of up
and down quarks in different numbers can give rise to color
superconductivity (see for example, [5, 6]).

In multi-band metallic systems such as inter-metallic
compounds and heavy fermions, electrons arising from distinct
atomic orbitals coexist at a common Fermi surface [7, 8].
Since these electrons have different effective masses or occur in
different numbers per atom, there is a natural mismatch of the
Fermi wavevectors of these quasi-particles. As a consequence,
we may expect to find the physics associated with asymmetric
superconductivity in these systems, even in the absence of
an external magnetic field. In general, the wave functions
of electrons in different orbitals hybridize and it turns out
that the mismatch of the Fermi wavevectors is affected by
hybridization. Since pressure controls hybridization [9], we
show that in multi-band superconductors it plays a role similar
to that of an external magnetic field in the study of FFLO

phases. The pressure induced FFLO phase does not compete
with the orbital effects which arise when applying an external
magnetic field to a superconductor.

The problem of superconductivity in systems with
overlapping bands was treated originally by Suhl et al [10].
These authors did not consider inter-band pairing as this is
negligible in the case where the critical temperature is much
smaller than the effective inter-band splitting.

Recently, we have investigated asymmetric superconduc-
tivity in multi-band metallic systems in the presence of intra-
and inter-band interactions [11]. We have studied the differ-
ent types of homogeneous ground states which appear as hy-
bridization is changed. In the inter-band case, as hybridization
increases there is a first order transition from the BCS state [12]
to the normal state. Between these states there is a gapless
metastable phase with similarities to the Sarma phase [13]
which has had renewed interest in recent years [14, 6]. The
instability of the BCS state is related to the appearance of a
soft mode at a characteristic wavevector [11, 14]. This sug-
gests that an alternative ground state as hybridization increases
is an inhomogeneous superconductor of the FFLO type. In this
paper we investigate the existence of such a state. Differently
from [10], we consider the situation where the dispersion rela-
tions of the bands overlap at the Fermi surface such that their
Fermi wavevectors are equal. In this case inter-band interac-
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tions must be taken into account. Also we neglect intra-band
pairing, assuming that these are suppressed by a strong on-
site repulsion. In this case we expect inter-orbital repulsion
to be relatively weaker such that the net attractive interaction
between different orbitals turns out to be larger than that for
intra-band channels.

2. Model and formalism

The effective Hamiltonian describing the two-band metallic
system, hybridization and pairing of quasi-particles with a net
momentum q is given by

Heff =
∑

k

(
εa

k a+
k ak + εb

k b+
k bk

)

+
∑

k

(
�qa+

k+ q
2
b+

−k+ q
2
+ �∗

qb−k+ q
2
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2
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+
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2
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2
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2

)
, (1)

where the inhomogeneous superconducting order parameter is

�q = −g
∑ 〈

b−k+ q
2
ak+ q

2

〉
, (2)

where g is the strength of the attractive interaction and the
symbol 〈· · ·〉 stands for the thermodynamic average at T �=
0 or to the expectation value of the product operators in
the superconducting ground state at zero temperature. The
dispersion of the quasi-particles is given by

εi
k = ξi (k) − μi , i = a, b (3)

where

ξi (k) = αi k
2,

{
αa = 1
αb = α = ma

mb

(4)

and α < 1 is the ratio of the effective masses.
The Green’s function method is used to obtain the BCS-

like order parameter
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where f (ω) is the Fermi function and 〈〈a; b〉〉ω is the
frequency dependent anomalous Green’s function in the
notation of Tyablikov [15] and Zubarev [16].

In order to calculate the relevant Green’s functions we
obtain their equations of motion. In particular for the
anomalous Green’s function 〈〈ak+ q
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After some long calculations we obtain for the anomalous
Green’s function,
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The poles of the Green’s function, D(ω) = 0, in equation (9)
yield the excitations of the system. Substituting the dispersion
relation of the bands,

εa
±k+ q

2
= k2 + q2

4
± −→

k .−→q − μa

εb
±k+ q

2
= αk2 + α

q2

4
± α

−→
k .−→q − μb

in equation (9), we obtain a complete fourth degree equation
for the energy ω of the excitations,

D = ω4 + bω3 + cω2 + dω + e = 0, (10)

where

b = −2vFq X (1 + α)
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where vF is the Fermi velocity and we have neglected terms of
O(q2) as usual.

In order to solve this equation we introduce the change of
variable

ω → u − b

4
= u + vFq

(1 + α)

2
cos θ, (12)

which yields a depressed equation of the fourth degree

u4 + βu2 + γ u + λ = 0, (13)

where
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8
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k εb
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q)
2

up to linear terms in q . In the case V = 0, α = 1, εa
k = εb

k ,
the fourth order equation reduces to a product of two identical
second order equations. The roots of this second order equation
yield the excitations found in the usual FFLO problem.
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3. The FFLO state induced by mixing

The problem above is still quite intractable. This is due
to the different masses (α �= 1) of the quasi-particles, that
in combination with mixing, has a very strong destabilizing
effect on the FFLO state. The effects of hybridization are
stronger at the points in k-space where the bands cross, i.e.,
for εa

kc
= εb

kc
. Analytical progress can be made if we assume

the case of homotectic bands, i.e., we take εb
k = αεa

k and
εa

k = εk . The crossing of the bands takes place exactly at the
Fermi surface, at εi

k = 0, which is just the situation where
inter-band interactions are most relevant [10]. Furthermore, to
make analytical progress we consider that the ratio between the
masses of the quasi-particles α is very close to unity, i.e., we
write α = 1 − ε, and neglect terms of order ε2. In this case
we can find a solution for the depressed fourth order equation
given by equation (13).

The energies of the excitations in this case are given by
ω = ω±

12(k), where

ω±
12(k) = ±ω12 + δμ (14)
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√
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These equations yield
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When calculating the gap function, �q , we find, after a change
of variables, the following integral,
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where f (ω) is the Fermi function, Dx(ω) is given by
equation (8) above and the denominator of the anomalous
Greens function is given by
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Recalling that in the equation above, ω → ω + iε, and taking
the imaginary part, we obtain that Gk(δμ) is a sum of three

terms, Gk(δμ) = G1
k(δμ) + G2
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k(δμ) with
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where E1
kσ = ξk + σ(V + δμ) and E2

kσ = ξk + σ(V − δμ)

with σ = ±. We have omitted terms of O(q)2 and O(ε)2.
When calculating the gap equation �q = ∑−→

k
Gk(δμ) at zero

temperature, the Fermi functions are expressed in terms of θ

functions and this imposes severe restrictions on the sums over−→
k . When these sums are performed and angular integrations

are carried out, the only contribution which remains is that
arising from G1

k(δμ). The gap equation can finally be written
as
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Subtracting the T = 0 gap equation for a BCS superconductor,
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αε2
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0

= 0, (20)

with α ≈ 1, from the left-hand side of equation (19), we obtain
in the weak coupling approximation,
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where ρ is the density of states at the Fermi level. The integrals
over k (

∫
dk) on the right-hand side are performed taking into

account the constraints imposed by the θ functions. They yield
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This equation has real solutions only if V + v∗
Fq > �q , where

v∗
F = vF(1+α)/2. Let us consider the case σ = −1, Recalling

that δμ = v∗
Fq cos θ , the integral above can be rewritten as

gρ

4
√

α

1

2v∗
Fq

∫ v∗
Fq

−v∗
F q

dx sinh−1

⎡

⎣

√
(V + x)2 − �2

q

�q

⎤

⎦ ,

where we used the change of variables, x = −v∗
Fq cos θ . In

fact the integrals are independent of σ and the result is simply
twice that for a given sign. Respecting the limits of integration
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in different cases to obtain a real result, the final gap equation
is given by

gρ

2
√

α
ln

�0

�q
= gρ

4
√

α

�q

v∗
Fq

[
G

(
v∗

Fq + V
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)
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(
v∗

Fq − V
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)]
,

(21)
where G(x) is the function [17]

G(x) = x cosh−1 x −
√

x2 − 1, |x | > 1

= 0, |x | � 1

= −G(−x), x < 0.

Notice that the mass ratio α cancels out explicitly in the gap
equation, equation (21). Its role at least for α ≈ 1 is just to
renormalize the Fermi velocity. From this equation we find
that for the FFLO state to be a solution it is necessary that
q = q/(V/v∗

F) > 1. Also, since G(|x | � 1) = 0, the solution
for V < V c

1 (q) = �0/(1 + q) is always �q = �0, i.e., the
BCS state. Thus a necessary condition for the FFLO state is
V > V c

1 (q). The upper critical value of the hybridization
V c

2 (q) below which the FFLO state can be a solution of the
gap equation is obtained taking the limit of equation (21) for
�q → 0. The results can be expressed as [5, 17]

V c
2 (q) = �0e

2(q + 1)

∣∣∣∣
q + 1

q − 1

∣∣∣∣

q−1
2q

.

In figure 1 we plot V c
1 (q) and V c

2 (q) as a function of
the reduced wavevector, and it is clear that there is a range
of values for the hybridization V 1

c < V < V 2
c for which a

FFLO phase may exist. The maximum value of V c
2 occurs

for q = qc ≈ 1.2, which when substituted in the equation
above yields Vc = V c

2 (qc) ≈ 0.75�0. This value of q is that
which minimizes the free energy in the range of stability of
the FFLO phase [5, 17]. The value V c

1 (q) above marks the
limit of stability of the FFLO phase. The actual value of the
hybridization for which the first order phase transition occurs is
obtained considering the energies of these states. The argument
is similar to that of Chandrasekhar and Clogston [18] to obtain
the critical field in BCS superconductors. Here we have to
consider the hybrid bands. In the limit of very small mass
differences their dispersion relations can be easily obtained and
are given by ω1,2 = [(1 + α)/2]εk ± V . On the other hand
the condensation energy for a system of unequal masses was
obtained in [19]. This is similar to that of a system of identical
particles with the mass m replaced by 2mr, where the reduced
mass mr = mamb/(ma + mb) = ma/(1 + α) in our notation.
The chemical potential is also modified and given by μ∗ =
(μa+μb)/2 = [(1+α)/2]μa. Then the effective particles have
dispersion ε∗

k = [(1 + α)/2]εk . Comparing the condensation
energy of these quasi-particles, Ec = (1/2)ρ∗�2

0, with the
energy associated with hybridization, EV = ρ∗V 2, one obtains
a critical hybridization, Vc = �0/

√
2 ≈ 0.71�0, above

which BCS superconductivity becomes unstable. In these
expressions, ρ∗ is the density of states at the Fermi level
of particles with dispersion relation ε∗

k = [(1 + α)/2]εk .
Consequently, there is a window of values for the hybridization
(0.71�0 < V < 0.75�0) where we can expect an FFLO phase
to occur. The transition at V c

2 is a continuous second order
transition from the FFLO to the normal state.

Vc / Δ0

0.4
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v*
f q / Δ0
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Figure 1. V c
1 (dashed) and V c

2 as a function of the reduced
wavevector.

(This figure is in colour only in the electronic version)

Notice that in multi-band systems, even at zero pressure,
hybridization is always present, such that the bands in
equation (1) already contain some degree of mixing. Then
the critical values of the hybridization obtained above refer to
changes in this parameter introduced by applying pressure in
the system.

4. Conclusions

Our results have a close similarity to the usual FFLO approach
for a superconductor in an external magnetic field. This
was anticipated from the form of the dispersion relations,
equation (18), where V enters formally as an external magnetic
field1. However, the analogy with the usual FFLO stops there.
The Green’s functions in the present case have four poles,
instead of two, and the numerator of the anomalous Green’s
function (equation (8)) is much more complex and includes
an angular dependence. At the level of the Hamiltonian,
equation (1), V mixes different states and from this point of
view it acts like a transverse field and not as a polarizing
longitudinal field. The latter only repopulates the states while
the former changes the nature of the quantum states.

The FFLO phase in condensed matter systems has long
been sought and now there is much evidence that it has been
found in organic superconductors [20]. Here we point out
the possibility of attaining an inhomogeneous superconducting
state by applying pressure in a multi-band superconductor. The
existence of quasi-particles belonging to different orbitals in a
common Fermi surface provides a natural mismatch. It can
be controlled by pressure and this, as we have shown, offers
the possibility of finding new inhomogeneous superconducting
states by tuning this external parameter. This zero field type
of FFLO phase is distinct from the field induced FFLO state
in that superconducting regions alternate with normal regions
and not with spin-polarized ones as in the original proposal.
Another mechanism for a zero field FFLO state has also been
proposed [21]. In our case it is very useful that we can use
pressure as a control parameter.

1 See, for example, equation 2.13 of [17].
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We have considered the simplest situation of an FF state
with the modulation of the order parameter described by a
single wavevector [1], although we referred to it generically as
an FFLO state. In the original FF state a magnetic field raises
the degeneracy of the spin up and down bands, introducing a
mismatch between them. In our case, hybridization creates a
repulsion between the bands, varying the mismatch of their
Fermi wavevectors. In both cases the wavevector controlling
the modulation of the order parameter is related to this
mismatch and can be tuned by an external parameter, the
magnetic field or pressure, respectively.

The study of heavy fermion superconductors probes the
phase diagram of these systems in a large region of applied
pressures and magnetic fields [22]. Many of these systems
can be doped allowing one to tune the Fermi level and
hybridization [23]. This type of study can be also carried out
in inter-metallic systems, which are best candidates to observe
the phase proposed here.
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